Vaizdų dekompozicijos ir dirbtinio intelekto sąjungos taikymas proceso evoliucijos nustatymui (VDDISTPEN)

 

Projekto nr.: PP-91L/19

Projekto aprašymas:

Vaizdų analizės ir reikšmingos informacijos išskyrimo iš jų algoritmai yra itin plačiai taikomi mokslo tyrimuose bei inžineriniuose sprendimuose. Skirtingi algoritmai sprendžia vaizdų atpažinimo, segmentavimo, klasifikavimo ir kitus uždavinius. Dažniausiai naudojami vaizdų dekompozicijos, mašininio mokymo algoritmai ar jų tarpusavio sąjunga konkretiems sprendimams pasiekti. Vis dėlto, mašininio mokymo pritaikymą riboja apmokymui reikalinga didelė duomenų imtis, kurią naujoje taikymo srityje sunku sudaryti. Nors šiuo metu vaizdų analizės algoritmai yra itin gerai išplėtoti ir vis plačiau nagrinėjamos jų taikymo galimybės, vaizdų sekos nagrinėjimas siekiant iš jų išskirti semantinę prasmę ir įvertinti proceso evoliuciją yra vis dar iššūkis algoritmine prasme. Dabartiniai praktikoje naudojami algoritmai, sprendžiantys vaizdų sekos semantikos uždavinius, dažniausiai atlieka diskretinių vaizdų analizę, kai tolimesnis semantinės prasmės išskyrimas atliekamas apibendrinant diskretinės analizės rezultatus.
Jei pirminės diskretinės vaizdų sekos apdorojimas atliekamas dekompoziciniais vaizdų analizės ir jų transformavimo ar suliejimo algoritmais, galima procesą iš diskretinės vaizdų sekos transformuoti į kontinuumą. Iš kontinuumo suprojektuoto vaizdo ar atitinkamos vaizdų sekos taikymas su tinkamai parinktomis neuroninių tinklų architektūromis leidžia smarkiai sumažinti vaizdų sekos duomenų imtis, reikalingas apmokymo procese. Tai itin aktualu dirbtinio intelekto apmokymo procesuose jo panaudojamumui vis labiau plečiantis į įvairias mokslo ir inžinerines sritis, kur sėkmingų rezultatų pasiekimas dažniausiai yra apribojamas apmokymo procesui galimų duomenų surinkti imtimis. Tuo tarpu esant didelėms duomenų imtims galima pasiekti geresnius rezultatus lyginant su klasikiniais algoritmais, kuomet proceso evoliucija yra vertinama apibendrinant diskretinės vaizdų sekos analizės rezultatus.

Download Nulled WordPress Themes
Premium WordPress Themes Download
Download WordPress Themes
Download Best WordPress Themes Free Download
udemy course download free

Projekto finansavimas:

KTU MTEPI fondas

Projekto įgyvendinimo laikotarpis: 2019-04-01 - 2019-12-31

Projekto koordinatorius: Kauno technologijos universitetas

Vadovas:
Andrius Kriščiūnas

Trukmė:
2019 - 2019

Padalinys:
Informatikos fakultetas, Taikomosios informatikos katedra

We are using cookies to provide statistics that help us give you the best experience of our site. You can find out more or switch them off if you prefer. However, by continuing to use the site without changing settings, you are agreeing to our use of cookies.
Sutinku